MODULATOR OF INTRACELLULAR Ca2+, THAPSIGARGIN, INTERFERES WITH *IN VITRO* SECRETION OF CYTOKINES AND NITRIC OXIDE

Eva Kmoníčkováa, b, Nikolina Kutinová Canováb, Hassan Farghalib, Antonín Holýc, Zdeněk Zídeka

a Institute of Experimental Medicine, Academy of Sciences, 142 20 Prague, Czech Republic
b Institute of Pharmacology, 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
c Institute of Organic Chemistry and Biochemistry, Academy of Sciences, 166 00 Prague, Czech Republic
e-mail: kmonickova@biomed.cas.cz

Received: June 10, 2005; Accepted: September 25, 2005

Key words: Thapsigargin/TNF-α/IL-10/RANTES/MIP-1α

Interference of thapsigargin (TG), an inhibitor of endoplasmic reticulum Ca2+ ATPase, with immune reactivity of murine macrophages was investigated under conditions *in vitro*. The activation of cells with lipopolysaccharide (LPS), interferon-γ (IFN-γ), and with acyclic nucleoside phosphonate N6-isobutyl-9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine (N6-isobutyl-PMEDAP) resulted in enhanced production of cytokines TNF-α, IL-10, chemokines RANTES/CCL5 and MIP-1α/CCL3, as well as in substantially augmented production of nitric oxide (NO) triggered by IFN-γ. The effects were in a dual mode of action influenced by TG (1 µM). While TG upregulated secretion of TNF-α, it inhibited secretion of IL-10 and RANTES. The immune-stimulated secretion of MIP-1α remained virtually unaffected, though TG on its own activated expression of MIP-1α in macrophages. The high-output NO production induced by IFN-γ, high concentrations of LPS, or by combination of IFN-γ plus LPS or N6-isobutyl-PMEDAP was inhibited by TG. On the other hand, production of NO which was marginally activated by low concentration of LPS was upregulated by TG.

INTRODUCTION

Physiologically maintained level of cytosolic free Ca2+ is a crucial signal controlling many cell functions1,2, and any imbalance may have cytotoxic consequences3. Also the role of calcium ions in the expression of immunomodulatory properties of drugs and their importance in effectiveness of natural defence mechanisms are being intensively explored. A plausible experimental approach to study this problem is the use of modulators of intracellular calcium. Thapsigargin (TG) is a naturally occurring sesquiterpene lactone with prominent acute action on various types of cells. It is widely employed as a selective and irreversible inhibitor of endoplasmic reticulum Ca2+ ATPase leading to rapid elevation of intracellular concentration of free calcium. The interference of TG with immune functions of cells is largely unknown. We investigated its effects on production of cytokines including chemokines RANTES and MIP-1α under conditions *in vitro*.

MATERIALS AND METHODS

Animals and isolation of peritoneal macrophages

Female mice of the inbred strain C57BL/6, 7-9 wks old, were purchased from Charles River Deutschland (Sulzfeld, Germany). They were kept in transparent plastic cages in groups of eight, and maintained in an Independent Environmental Air Flow Cabinet (ESI Flufrance, Wissous, France). Lighting was set on 0600 to 1800 h, temperature at 22 °C.

Mice, sacrificed by cervical dislocation, were injected intraperitoneally with 8 ml sterile saline. Collected and pooled lavage cells were washed, resuspended in culture medium and seeded into 96-well flat-bottom Nunc microplates in 100-µl volumes. Adherent peritoneal cells (macrophages) were isolated by incubating the cells for 2 h at 37 °C, 5% CO\textsubscript{2}, and then thrice vigorously shaking the plate and washing to remove non-adherent cells. They were cultured with or without addition of immunostimulatory agents, i.e interferon-γ (IFN-γ; 5000 pg/ml), lipopolysaccharide (LPS; 10-10,000 pg/ml), and N6-isobutyl-9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine (N6-isobutyl-PMEDAP; 2-100 µM), and in the absence or presence of thapsigargin (TG; 1 µM) in Heraeus incubator for 24 h. TG was added 30 min before the immunostimulators. All experimental variants were set in duplicate.

Culture medium and chemicals

Complete RPMI-1640 medium contained 10 % heat-inactivated fetal bovine serum, 2 mM L-glutamine, 50 µg/ml gentamicin, and 5 × 10-5 M 2-mercaptoethanol (all Sigma). Recombinant mouse IFN-γ was purchased from R&D Systems (Minneapolis, MN), LPS of S. typhimurium origin from Difco Labs (Detroit, MI). Acyclic nucleoside phosphonate N6-isobutyl-9-[2-
322

322

(phosphonomethoxy)ethyl]-2,6-diaminopurine (N\textsubscript{6}-iso-

butyl-PMEDAP) was synthesized in-house (Inst. Organic

Chemistry and Biochemistry) according to the procedure
described elsewhere4. The cell viability and cell prolifera-
tion assay kit WST-1 was bought from Roche Applied

Science (Mannheim, Germany). Thapsigargin was ob-
tained from Sigma-Aldrich (Prague, CZ).

Immunobiological assays

Concentration of cytokines and chemokines in the 5-
h cell supernatants was determined using enzyme-linked
immunoabsorbent assay (ELISA) kits, following the
manufacturer’s instructions (R&D Systems, Minneapolis,
MN).

The concentration of nitrites in the 24-h supernatants
was taken as a measure of NO production. It was detect-
ed in individual cell-free samples (50 µl) incubated for
10 min at 37 °C with an aliquot of a Griess reagent (1%
sulphanilamide/0.1% naphthyleindole/2.5% H\textsubscript{3}PO\textsubscript{4}). The
absorbance at 540 nm was recorded using a microplate
spectrophotometer (Tecan, Austria). A nitrite calibration
curve was used to convert absorbance to µM nitrite.

Viability of macrophages was assayed after the 20 h
of culture, following the manufacturer’s instructions
(Roche). Absorbances at 450 nm were determined at the
interval of 2.5 h after addition of WST-1.

Data analysis

Analysis of variance (ANOVA) with subsequent
Bonferroni’s multiple comparison test for selected pairs,
and graphical presentation of data were done using the
Prism program (GrapPad Software, San Diego, CA).

RESULTS AND DISCUSSION

Irrespective of the type of primary immune stimula-
tion of macrophages, TG significantly augmented secre-
tion of proinflammatory cytokine TNF-α (Fig. 1). This is
in good line with the observation that transient increase

![Fig. 1. Effect of thapsigargin (TG, 1 µM) on 5-h secretion of cytokines by mouse macrophages. The following concentrations of primary immune stimulators were applied: LPS 1 ng/ml, IFN-γ 5 ng/ml, N\textsubscript{6}-isobutyl-PMEDAP (PMEDAP) 50 µM. The data are means ± SEM.](image-url)
of intracellular calcium plays a role in the LPS-induced expression of TNF-α in macrophage cell line J774.1 (ref.5). However, an opposite effect was observed in hepatocytes where TG, in dependence on experimental conditions, did not block or rather inhibited release of TNF-α (ref.6). In accordance with the finding of immunostimulatory potential of TG are data showing an enhancement of IL-8 production by human colonic epithelial cells7, and IL-6 by rat8, and mouse9 peritoneal macrophages. In addition, the release of calcium from endoplasmic reticulum stores has been found to activate secretion of IL-1α and IL-1β in murine macrophages10. We found that TG had virtually no effect on the immune-stimulated secretion of chemokine MIP-1α/CCL3, although it did activate secretion of the chemokine in immune-nonstimulated macrophages. In sharp contrast, TG profoundly inhibited production of chemokine RANTES/CCL5 as well as antiinflammatory cytokine IL-10 (Fig. 1).

Although secretion of the major NO-upregulatory cytokine TNF-α was enhanced, production of NO was deeply suppressed by TG (Fig. 2) in combination with IFN-γ, IFN-γ/LPS, PMEDAP, IFN-γ/PMEDAP, and with relatively high dose of LPS (10 ng/ml). Notably, as low concentration of TG as 0.1 µM was already effective. On the other hand, production of NO following the low dose of LPS (10 pg/ml) was significantly potentiated by TG. The data are in agreement with findings demonstrating both NO-stimulatory11 and NO-inhibitory12 effects of

Fig. 2. Interference of thapsigargin (TG) with production of NO by mouse macrophages. NO was activated by IFN-γ, LPS, N6-isobutyl-PMEDAP (PMEDAP) and their combinations. Thapsigargin was added 30 min before. Supernatant concentration of nitrites was determined after the 24-h culture. Each point is mean ± SEM and data are representative of two identical experiments.

Fig. 3. Effect of thapsigargin on formation of formazan from the tetrazolium salts by mouse macrophages. The WST-1 assay was done after the 20-h culture of cells in the presence of IFN-γ, LPS, and N6-isobutyl-PMEDAP (PMEDAP; 50 µM) ± thapsigargin (1 µM). Each bar represents mean ± SEM obtained from six culture wells.
TG on iNOS mRNA expression and NO biosynthesis in murine macrophages.

We have found that TG decreases formation of formazan from the tetrazolium salts (Fig. 3), suggesting its toxic influence in terms of decreased number of metabolically active cells in the culture. The suppression was very similar in all experimental settings, reaching statistically highly significant over-all value of 30% ($F_{1,6} = 250; P < 0.0001$). With respect to the fact that not only inhibitory but also stimulatory effects of TG have been observed, the cytotoxicity of TG is unlikely to explain its immunomodulatory interventions.

It can be concluded that TG interferes with cell immune functions. Our original data show that it also interferes with expression of chemokines. The antithetical effects suggest that TG may target multiple underlying signaling pathways. Toxicological aspects of the dual mode of action remain to be firmly established.

ACKNOWLEDGEMENT

This study was supported by grants from the Grant agency of the Czech Republic # 305/05/2425, # 305/03/1470, and from the Centre for New Antivirals and Antineoplastics 1M6138896301. It was performed as a part of research project of the Institute of Experimental Medicine # AVOZ50390512.

REFERENCES